具体就是这个题目,求I=∫∫(4-x^2-y^2)^1/2 dxdy,其中D:x^2+y^2<=4,y>=0
一道高数题
发布时间:2019-09-01 13:35
可以按照以下步骤进行解题:
第一步:积分区域。
令x=rcosθ,y=rsinθ
积分小区域为rdrdθ。
为以坐标原点为圆心,半径r为2的上半圆。
半径r区间[0,2],极坐标角度θ的区间[0,π]。
第二步:被积函数。
被积函数为根号(4-r^2)
第三步:二重积分
dθ|[0,π]根号(4-r^2)rdr|[0,2]
=π根号(4-r^2)d(4-r^2)/2|[2,0]
=π(4-r^2)^(3/2)/3|[2,0]
=π[4^(3/2)-0]/3
=8π/3